

# **CHAPTER SIX: CHARACTERISTICS OF A GOOD TEST**

### 1. RELIABILITY

- # The notion of consistency of one's score with respect to one's average score over repeated administrations is the central concept of reliability
- # A test is reliable if it would give us the same result over and over again (assuming that what we are measuring is not changing)
- # If one takes two measures of the same attribute, the two measures will not resemble each other exactly:
  - (a) **meaningful variance** → those creating variance related to *the purposes of the test* (score change due to learning/forgetting) → predictable, systematic



(b) **error variance** → those generating variance due to *other extraneous sources* → unpredictable, unsystematic

| Variance due to environment                    | Variance due to administration procedures      directions     equipment     timing | Variance due to scoring procedures |
|------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------|
| Variance due to the test and test items        | Variance attributable to examinees                                                 |                                    |
| <ul> <li>test booklet clarity</li> </ul>       | • health                                                                           |                                    |
| <ul> <li>particular sample of items</li> </ul> | • fatigue                                                                          |                                    |
| <ul> <li>number of items</li> </ul>            | <ul> <li>motivation</li> </ul>                                                     |                                    |

### 2. CLASSICAL TRUE SCORE THEORY (CTS)

# An **observed score** comprises two factors or components: a **true score** and an **error score**. The relationship between the observed and true score can be illustrated as follows:





We don't speak of the reliability of a measure for 'an individual' – reliability is a characteristic of a measure that is taken 'across individuals':



**Reliability** → the ratio of the variance of true scores to the variance of observed scores:





### 3. STANDARD ERROR OF MEASUREMENT

The formula for calculating SEM is relatively simple:

$$SEM = S_x \sqrt{1 - r}$$

where

 $S_x$  = the standard deviation of the test

 $\mathbf{r}$  = reliability of the test

**Example:** If the standard deviation of a test were 15 and its reliability were estimated as 0.84, then what would be standard error of measurement?

$$SEM = S_x \sqrt{1 - r} = 15 \times \sqrt{1 - 0.84} = 15 \times \sqrt{0.16} = 15 \times 0.4 = 6$$

**Example:** When the test has no measurement error, then reliability would be -----

$$SEM = S_x \sqrt{1 - r} \to 0 = S_x \times \sqrt{1 - r} \to 0 = \sqrt{1 - r} \to r = 1$$

Note: There is a negative relationship between standard error of measurement and reliability.

Conceptually → SEM provides a concrete estimate in test score values of the amount of unreliable score variation in a set of scores

Practically → SEM is used to determine a band around a student's observed score within which that student's true score would probably fall



**Example:** If the SEM of a set of scores is 2.5 we can be sure that a student's true score who obtained 15 would fluctuate 68% of times between -----



## 4. APPROACHES TO ESTIMATING RELIABILITY

### **4.1. Stability (Test-retest Method)**

Administering a given test twice and then calculating the correlation between the two sets of scores, using Pearson product-moment correlation coefficient.

Note: consistency of scores over time or temporal stability.

#### Drawbacks:

- Two administrations
- Human being abilities are most likely to change from one administration to another.
- **Practice effect:** after the first test, testees would naturally have a better performance on the second administration

## **4.2. Equivalence (Parallel-forms Method)**

Two similar forms of the same test are administered to a group of examinees just once → Using Pearson product moment formula, reliability is calculated.

Parallel forms:

He usually ...... tennis every day.a) playsb) playc) playingMy brother often ...... a cup of tea every morning. a) drinkingb) drinksc) drink

#### Drawbacks:

- Constructing two parallel forms
- Ordering effect \neq counterbalanced test design

|         | Time 1 | Time 2 |
|---------|--------|--------|
| Half I  | Form A | Form B |
| Half II | Form B | Form A |

## 4.3. Internal Consistency

Uses information internal available in one administration of a single test. Assumptions:

- a) test scores are **unidimensional** → items of a test all measure the same, single ability // speededness
- b) test items are homogeneous
- c) the items or parts of a test are locally independent

## 4.3.1. Split-half Methods

A single test is administered to a group of examinees  $\rightarrow$  the test is divided into two equal halves

## **Spearman Brown estimate**

The correlation (Pearson product-moment) between the two halves is an estimate of the test score reliability  $\rightarrow$  *Spearman-Brown prophecy* formula:

$$r_{\text{total}} = \frac{2(r_{\text{half}})}{1 + (r_{\text{half}})}$$

**Example:** The reliability of half of a grammar test is calculated to be 0.35. By applying the Spearman Brown's prophecy formula, the total reliability would be -----

$$r_{\text{total}} = \frac{2r_{\text{half}}}{1 + r_{\text{half}}} = \frac{2 \times .35}{1 + .35} = \frac{0.7}{1.35} = 0.51$$

Assumptions:

- The two halves are equivalent, i.e. they have equal means and variances
- The two halves are experimentally independent of each other

### **Guttman estimate**

It does not assume equivalence of the halves; it does not require computing a correlation between them:

$$\alpha = 2 \left( 1 - \frac{S_{\text{odd}}^2 + S_{\text{even}}^2}{S_{\text{total}}^2} \right)$$

## 4.3.2. Item variance methods

## **KR-21 Method**

Developed by Kuder and Richardson.

$$(KR - 21)r = \left(\frac{K}{K - 1}\right)\left(1 - \frac{\overline{X}(K - \overline{X})}{KV}\right)$$

where:  $\mathbf{K} = \text{the number of the items in a test}$ 

# Assumptions:

- items are of equal difficulty
- items are scored dichotomously (no weighting scheme)
- **Note:** called **rational equivalence**
- Note: the easiest and most frequently used method
- Note: an underestimate index of reliability

## **KR-20 Method**

Avoids the problem of underestimating reliability:

$$KR - 20 = \left(\frac{K}{K - 1}\right) \left(1 - \frac{\sum pq}{S_t^2}\right)$$

where: pq (item variance) = IF (1 – IF)

# Assumption:

- items are scored correct/incorrect (i.e., dichotomously or binary)
- Note: most accurate and flexible internal consistency method

# Cronbach alpha method

Used with weighted items where examinees may receive partial credit:

$$\alpha = \left(\frac{K}{K-1}\right) \left(1 - \frac{\sum S_i^2}{S_t^2}\right)$$

where:  $S_i^2$  = item variances for each individual item

|                  | Assumption  |              | Effect if assumption is violated |              |
|------------------|-------------|--------------|----------------------------------|--------------|
|                  | Equivalence | Independence | Equivalence                      | Independence |
| Spearman-Brown   | Yes         | Yes          | Underestimate                    | Overestimate |
| Guttman          | -           | Yes          | -                                | Overestimate |
| Kuder-Richardson | Yes         | Yes          | Underestimate                    | Overestimate |

### 5. FACTORS INFLUENCING RELIABILITY

## **5.1.** The Effect of Testees

- Psychological and physiological conditions
- Testees' Homogeneity
- Guessing: Educated guess vs. wild guess
- Test-wiseness → a test taker's capacity to utilize the characteristics and formats of the test and the test taking situation to guess the correct answer

## **5.2.** The Effect of Test Factors

- Homogeneity of the items
- The speed with which the test is performed
- Ambiguity of instructions and items
- Discriminability
- Number of items

$$r_{k} = \frac{kr_{1}}{1 + (k - 1)r_{1}}$$

 $\mathbf{r_k}$  = the test when adjusted to k times its original length

 $\mathbf{r_1}$  = the observed reliability of the test with its present length

$$\mathbf{k} = rac{ ext{تعداد ثانویه سوالات}}{ ext{تعداد او لیه سوالات}}$$

### **5.3.** The Effect of Administration Factor

- The influence of the environment
- Quality and test timing

# **5.4. The Influence of Scoring Factors**

The concern is **rater reliability** in case of subjective items:

- Intra-rater reliability  $\rightarrow$  fluctuations of a *single scorer in scoring items twice*  $\rightarrow$  unclear scoring criteria, fatigue, bias toward particular good and bad students, or simple carelessness
- Inter-rater reliability → fluctuations of different scorers scoring a single test → lack of adherence to scoring criteria, inexperience, inattention, or even preconceived biases

## To avoid the effect of scoring:

- Provide a detailed scoring key
- Identify candidates by number, not name
- Train scorers
- Employ multiple, independent scoring
- Agree acceptable responses and appropriate scores at outset of scoring

#### 6. VALIDITY

# Reliability: How much of an individual's test performance is due to measurement error, or to factors other than the language ability we want to measure? 

# Validity: How much of an individual's test performance is due to the language ability we want to measure? 

# maximizing the effects of these abilities

**Validity**  $\rightarrow$  the extent to which a test measures what it is supposed to measure.

## 6.1. Content Validity

# Degree of correspondence between the test content and the content of the materials to be tested:

- Subject matter = the topics
- Instructional objectives = degree of learning that students are supposed to achieve
- # NRT  $\rightarrow$  the extent to which a test contains a representative sample of the larger universe it is supposed to represent
- # Main issue is sampling  $\rightarrow$  appropriateness of the test sample
- # It provides subjective information  $\rightarrow$  to reduce subjectivity:
  - Have the test reviewed by more than one expert
  - Transfer the detailed definition onto a table of specification

# 6.2. Face Validity

The way the test looks to the examinees, test administrators, educators, and the like  $\rightarrow$  this is not validity in the technical sense

- a well-constructed, expected format with familiar tasks,
- a test that is clearly doable within the allotted time limit,
- items that are clear and uncomplicated,
- directions that are crystal clear,
- task that relate to their course work (content validity), and
- a difficulty level that presents a reasonable challenge,
- no surprises in the test.

### 6.3. Criterion-related validity

Investigates the correspondence between the scores obtained from the newly-developed test and the scores obtained from some independent outside criteria → Pearson product-moment correlation

- Concurrent validity: a particular trait is administered *concurrently* with another well-known test
- **Predictive validity:** the two tests are administered with *some time interval*.
- **Note:** known as **empirical** or **statistical validity**
- Note: content of the criterion measure must be on the same domain as that of the new test

### 6.4. Construct Validity

# A test has construct validity to the extent to which the psychological reality of a trait or construct (like



language proficiency) can be established

# If a test has construct validity, it is capable of measuring certain specific characteristics in accordance with a theory of language behavior and learning

# The major problem with psychological constructs is that testers cannot take a construct out of a student's brain and show that a test is in fact measuring it. Experiment:

multitrait-multimethod studies factor analytic techniques structural equation modeling think-aloud protocol differential-groups studies intervention studies

### 7. FACTORS INFLUENCING VALIDITY

- Directions
- Difficulty levels of the test
- Sample truncation
- Structure of items
- Arrangement of items and correct responses

### 8. PRACTICALITY

Have to do with physically putting tests into place in a program

- Ease of Test Administration
- Ease of Test Scoring
- Ease of Interpretation and Application
- Ease of Test Construction
- The Cost Issue

#### 9. RELIABILITY VS. VALIDITY

- # Reliability is a mathematical concept = it is score-dependent
- # Validity is a relative term = it depends on the purpose of the test = it is test-dependent
  - If a test is reliable, it may or may not be valid.
  - If a test demonstrates a certain degree of validity, it is to some extent reliable.

### 9. EXTRA POINTS

**Coaching effect** → the effect on test scores of 'teaching to the test'. Coaching can be defined as short term instruction in test *wiseness* and in answering questions similar to those appearing on the target examination

**Test comprise effect** → the acquisition of prior knowledge of test content